5,839 research outputs found

    Effective Dielectric Tensor for Electromagnetic Wave Propagation in Random Media

    Full text link
    We derive exact strong-contrast expansions for the effective dielectric tensor \epeff of electromagnetic waves propagating in a two-phase composite random medium with isotropic components explicitly in terms of certain integrals over the nn-point correlation functions of the medium. Our focus is the long-wavelength regime, i.e., when the wavelength is much larger than the scale of inhomogeneities in the medium. Lower-order truncations of these expansions lead to approximations for the effective dielectric constant that depend upon whether the medium is below or above the percolation threshold. In particular, we apply two- and three-point approximations for \epeff to a variety of different three-dimensional model microstructures, including dispersions of hard spheres, hard oriented spheroids and fully penetrable spheres as well as Debye random media, the random checkerboard, and power-law-correlated materials. We demonstrate the importance of employing nn-point correlation functions of order higher than two for high dielectric-phase-contrast ratio. We show that disorder in the microstructure results in an imaginary component of the effective dielectric tensor that is directly related to the {\it coarseness} of the composite, i.e., local volume-fraction fluctuations for infinitely large windows. The source of this imaginary component is the attenuation of the coherent homogenized wave due to scattering. We also remark on whether there is such attenuation in the case of a two-phase medium with a quasiperiodic structure.Comment: 40 pages, 13 figure

    Effect of isospin dependent cross-section on fragment production in the collision of charge asymmetric nuclei

    Full text link
    To understand the role of isospin effects on fragmentation due to the collisions of charge asymmetric nuclei, we have performed a complete systematical study using isospin dependent quantum molecular dynamics model. Here simulations have been carried out for 124Xn+124Xn^{124}X_{n}+ ^{124}X_{n}, where n varies from 47 to 59 and for 40Ym+40Ym^{40}Y_{m}+ ^{40}Y_{m}, where m varies from 14 to 23. Our study shows that isospin dependent cross-section shows its influence on fragmentation in the collision of neutron rich nuclei

    Investment Opportunities Forecasting: Extending the Grammar of a GP-based Tool

    Get PDF
    In this paper we present a new version of a GP financial forecasting tool, called EDDIE 8. The novelty of this version is that it allows the GP to search in the space of indicators, instead of using pre-specified ones. We compare EDDIE 8 with its predecessor, EDDIE 7, and find that new and improved solutions can be found. Analysis also shows that, on average, EDDIE 8's best tree performs better than the one of EDDIE 7. The above allows us to characterize EDDIE 8 as a valuable forecasting tool

    Understanding the p-Xylene Formation Mechanism from Dimethylfuran and Ethanol

    Get PDF

    Cavity quantum electro-optics

    Full text link
    The quantum dynamics of the coupling between a cavity optical field and a resonator microwave field via the electro-optic effect is studied. This coupling has the same form as the opto-mechanical coupling via radiation pressure, so all previously considered opto-mechanical effects can in principle be observed in electro-optic systems as well. In particular, I point out the possibilities of laser cooling of the microwave mode, entanglement between the optical mode and the microwave mode via electro-optic parametric amplification, and back-action-evading optical measurements of a microwave quadrature.Comment: 6 pages, 3 figures; v2: updated and submitted, v3: extended, accepted by Physical Review

    Carbon formation in solid oxide fuel cells during internal reforming and anode off-gas recirculation

    Get PDF
    This aim of this work is to determine carbon formation when methane is reformed directly inside the SOFC anodes, from thermodynamic equilibrium and kinetic approaches. Two carbon formation determination approaches - carbon-steam equilibrium and carbon activity approaches were then presented, compared and discussed. The consideration of the reversed syngas formation reaction is important to the carbon activity approach, which is expected to be a useful tool for determining carbon formation in the anode recirculation system. The investigation of the combined steam and dry methane reforming, both thermodynamic equilibrium computational modelling approach and kinetic experimental validation were presented in this work. Different ratios among methane, steam and carbon dioxide, leading to different oxygen to carbon atomic were used to examine the methane reforming and the carbon formation prevention abilities. Finally, a kinetic modelling for a methane fed SOFC with anode recirculation system was built based on the integration of different functions for a more detailed investigation. The combination of different fuel current densities (i.e.0.5, 1.0 and 1.4), steam to methane ratios (i.e. 0.25-4.0) in the fuel and different recycling rate (i.e.10%-90%) were given to the model to investigate the effects of fuel conditions on the system operation

    Comparison of Statistical Multifragmentation Model simulations with Canonical Thermodynamical Model results: a few representative cases

    Full text link
    The statistical multifragmentation model (SMM) has been widely used to explain experimental data of intermediate energy heavy ion collisions. A later entrant in the field is the canonical thermodynamic model (CTM) which is also being used to fit experimental data. The basic physics of both the models is the same, namely that fragments are produced according to their statistical weights in the available phase space. However, they are based on different statistical ensembles, and the methods of calculation are different: while the SMM uses Monte-Carlo simulations, the CTM solves recursion relations. In this paper we compare the predictions of the two models for a few representative cases

    Widths of atomic 4s and 4p vacancy states, 46 less than or equal to Z less than or equal to 50

    Get PDF
    Auger and X-ray photoelectron spectra involving N1, N2, and N3 vacancy states of Pd, Ag, Cd, In, and Sn were measured and compared with results of free atom calculations. As previously observed in Cu and Zn Auger spectra that involve 3d-band electrons, free-atom characteristics with regard to widths and structure were found in the Ag and Cd M4-N4,5N4,5 and M5-N4,5N4,5 Auger spectra that arise from transitions of 4d-band electrons. Theoretical N1 widths computed with calculated free-atom Auger energies agree well with measurements. Theory however predicts wider N2 than N3 vacancy states (as observed for Xe), while the measured N2 and N3 widths are nearly equal to each other and to the average of the calculated N2 and N3 widths. The calculations are made difficult by the exceedingly short lifetime of some 4p vacancies and by the extreme sensitivity of super-Coster-Kronig rates, which dominate the deexcitation, to the transition energy and to the fine details of the atomic potential
    • …
    corecore